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Abstract—Finding an equilibrium between accuracy and 

reduced complexity in digital predistortion techniques is at the 

crux of modern linearization processes for power amplifiers. 

This work seeks to improve the trade-off  between reducing the 

complexity and fidelity by analyzing a new approach of 

reduction algorithms: mixing two different bases before the 

reduction in order to expand the scope of data interpretation 

and selecting only the best coefficients from both bases and 

uniting them under a single, reduced basis.   
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I. INTRODUCTION  

Increasing relevancy of radiofrequency systems in the 
modern era has pushed for more efficient power amplifiers 
(PAs) [1]. However, the operation of  PAs still requires highly 
linear outputs. Given the information that PAs have a trade-
off between highly efficient zones and highly linear zones, 
other approaches are taken, in this case, linearization of the 
signal [2]. 

To linearize PA signal, many techniques are utilized. 
Amidst them, one of the commonly used ones is digital 
treatment. One of the digital treatment methods is to utilize 
equations that model the behavior of the PA to construct a 
basis that digitally represents the distortion of such PA, then 
utilizing the inverse of the behavior of distortion in order to 
linearize the output signal. 

However, the number of parameters contained in this basis 
increases very rapidly with the polynomial order and memory 
length chosen, criteria that dictates the fidelity of the model, 
meaning that, for a reasonable fidelity, which usually results 
in  a very large number of parameters. So large is this number 
that, for practical applications, it becomes unpractical, due to 
time needed to compute the output. A solution found for such 
problem is the reduction of parameters via reducing 
algorithms, such as incrementor and decrementor, ascending 
and descending algorithms [3]. These algorithms evaluate the 
contribution of each parameter to the fidelity of the modeling, 
and then select only the ones that contribute the most within a 
single basis of parameters.  

The proposition of this work is to analyze what happens 
with the fidelity of the model when we mix two different bases 
and then reduce the coefficients utilizing one of the reducing 
algorithms. The study hereafter reports the modelling 
accuracy of the mixed basis of Polar Volterra Series (PVS) 
and Modified Angle Difference Series (MADS), as well as 
their respective standalone versions, both in its two-
dimensional (2D) form [4].  

II. PA MODELING AND 2D VERSIONS  

In order to reduce the complexity of the systems, 2D 

restrictions were utilized, meaning that only were took into 

consideration  the unidimensional and bidimensional terms. 

Unidimensional terms are terms that only use the information 

of one instant of time, and bidimensional terms are those that 

only use information of two distinct instants of time. 

Applying such restrictions alterates the way the original 

bases, making them simpler and easier to analyze. 

A. Polar Volterra Series (PVS) 

The Polar Volterra series is well-known within the digital 
predistortion community [5]. It has characteristics well suited 
to model memory-fading, nonlinear systems, such as PAs. 
However, in order to take into account many terms of 
memory, this system grows very fast in terms of numbers of 
coefficients, thus rendering the modeling unrealistically 
complex. Applying the 2D restriction contributes towards 
reducing significantly the number of coefficients, given by the 
constitutive equation : 
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In (1) and (2),  the first four sums regard amplitude 
information, and the remaining sums regard phase 
information.  

 A restriction in  𝑚1, 𝑚2, 𝑙1, 𝑙2, 𝑙3, 𝑙4  is required: all 
parameters can only be referenced to two instants of time to force the 
2D condition. 𝑚1, 𝑚2, 𝑙1, 𝑙2, 𝑙3, and 𝑙4  can only assume two values 
𝑛1 and 𝑛2, those being any value smaller than M or L. For example: 
suppose 𝑚1 = 1, then  𝑚2, 𝑙1and 𝑙2 can only be 1 or another memory 
number n. Suppose for sake of argument n=2. Then 𝑚2, 𝑙1, 𝑙2, 𝑙3, and 

𝑙4 can only be 1 or 2.  Looking at the 2D terms of this equation 
results in a reduced version of PVS, which can be evaluated 
and combined for further results. 

B. Modified Angle Difference Series (MADS) 

Explored in the early work of [4], the MADS has similar 
properties to PVS, meaning it also has good for modeling 
memory fading, nonlinear systems. This, however, doesn’t 
grow as fast in relation to the number of coefficients in 
proportion to the number of memory elements taking into 
consideration.  

This should be a redeeming feature to the model, making 
it a better option than PVS. Unfortunately, its performance 
modeling PA behavior is inferior to PVS [4]. Meaning that, by 
itself, it is not a good option for modeling of PAs. Applying 
2D restrictions also contributes towards the reduction of 
coefficients,given the  constitutive equation:  
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 A restriction in  𝑚1, 𝑚2, 𝑙1, 𝑙2  is required: all parameters 
can only be referenced to two instants of time to force the 2D 
condition. 𝑚1, 𝑚2, 𝑙1and 𝑙2   can only assume two values 𝑛1 
and 𝑛2 , those being any value smaller than M or L. For 
example: suppose 𝑚1 = 1, then  𝑚2, 𝑙1and 𝑙2 can only be 1 or 
another memory number n. Suppose for sake of argument n=2. 
Then 𝑚2, 𝑙1and 𝑙2 can only be 1 or 2. Looking at the 2D terms 
of this equation results in a reduced version of MADS, which 
can be evaluated and combined for further results. 

C. Mixed Series (MIX) 

This can be obtained by directly adding all coefficients of 

PVS and MADS. It is worth noting that due to the fact that 

PVS and MADS not containing the same coefficients, it is 

expected that when selecting the coefficients that contribute 

the most, better results might be found due to the combination 

of the bases. 

III. ASCENDING APPROACH FOR COMPLEXITY REDUCTION 

 Many 𝑦𝑐𝑎𝑙  from sequential instants of time can be taken 
and ordered like a vector, the constitutive equations can be 
written like:  

𝑌𝑐𝑎𝑙 = 𝑋𝐻                                   , (3) 

where Ycal is a N x 1 vector of the calculated outputs, using 
any given algorithm, X is a N x Q matrix whose elements are 
obtained from using a constitutive equation and taking 
parameters, H is a Q x 1 vector containing the coefficients, N 
is the number of  samples being used to model the system and 
Q is the number of coefficients. In regard to what algorithm 
would be utilized for analysis, an ascending algorithm 
approach was chosen, because of its overall superb 
performance.  

In this method, single coefficients are selected and the 
normalized mean square error (NMSE) contribution of that 
single coefficient is measured. Then they are ordered in 
ascending order, and the best ranked coefficient is selected. In 
the next step, single coefficients are selected and evaluated  by 
the NMSE contribution of those coefficients in conjunction 
with the previously selected coefficient. Then the outcomes 
are ranked in ascending order, and the best ranked coefficient 
is selected. In the following steps, the processess of evaluating 
single coefficients with conjunction of the previously selected 
coefficients is repeated, until the desired number of 
coefficiens is achieved. 

NMSE can be calculated by the following equation: 
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where 𝑦𝑛
𝑑𝑒𝑠 is the measured output at the time sample n and 

𝑦𝑛
𝑐𝑎𝑙  is the estimated output at the time sample calculated 

from any of the given bases.  

 

IV. RESULTS  

In this section, the ascending algorithm is applied  to the 

PVS, MADS and MIX for the modeling of the direct and 

inverse transfer characteristics from the PA under study. The 

inverse modeling has application in predistortion schemes. 

Input and output data was collected, with a vector signal 

analyzer from Rohde & Schwarz, from a GaN class AB PA, 

with a center frequency of 900 MHz and subjected to a 

WCDMA 3.84 MHz envelope. The sampling frequency is 

30.72 MHz.  

In the PVS, MADS and MIX models, the truncation 

factors are set to M = 3, L = 2, P1 = 5 and P3 = 2. The 

ascending algorithm was executed in Matlab software using 

floating-point double-precision arithmetic. The input and 

output data was split in two: one part was utilized to set the 

coefficients and the other part was utilized to validate and test 

the bases. 

Figures 1 and 2 show the calculated NMSE as a function 

of the number of coefficients Q, for the modeling of direct 

and inverse transfer characteristics, respectively. NMSE, 

being a measure of error, has to be a small number for the 

model to be accurate. That means that the lower a point in 

Fig. 1 and 2, the more accurate the given model is.  

 

Fig. 1. NMSE versus the number of coefficients for direct modeling. 

 

 

Fig. 2. NMSE versus the number of coefficients for inverse modeling. 

Figures 1 and 2 show that MIX and PVS exchange best 
performance as the number of coefficients is changed, 



meaning that for some number of coefficients, it is preferable 
to use MIX instead of PVS. This is a positive result, meaning 
that combining different bases can, sometimes, be utilized as 
a more effective alternative for digital modeling. Figures 3 and 
4 show the relationship of the input amplitude and the output 
amplitude. The type of information shown in Figs. 3 to 6 are 
called amplitude modulation to amplitude modulation (AM-
AM) characteristics. They are useful in evaluating how linear 
is the behavior of a given transfer characteristic in regards to 
the amplitude.  

  

Fig. 3. AM-AM characteristics for direct modeling with 100 coefficients. 

 

Fig. 4. AM-AM characteristics for inverse modeling with 100 coefficients. 

Figure 5 and 6 also show the relationship of the input 
amplitude and the output amplitude in our new basis, but in 
different visualization. 

 Each sample is colored in relation to absolute value of the 
error of that given point and of its measured counterpart. The 
error parameter taken into account to color the results is the 
absolute value of the difference between the measured output, 
symbolized in the figures by the green  markers, and the values 
calculated by the MIX basis. This approach was taken so that 
the position of the calculated value can be observed at the 
same time as the error of that position in relation to the 
expected output value. Bright blue meaning the measured and 
calculated were close and red meaning they were distant, 
meaning that the error was more significant, green markers 
simbolize the measured real value, for reference. 

 

Fig. 5. AM-AM characteristics and error for direct modeling with 100 

coefficients. 

 

 

Fig. 6. AM-AM characteristics for direct modeling with 100 coefficients. 

In Fig. 5 and 6, it can be observed that the number of red 
markers is sparse, in comparison to the number of blue 
markers, which means that, overall, the error of the proposed 
model, MIX, is pretty low, with exception of some outliers. 

Figures 7 and 8 show the relationship of input amplitude 
and phase difference (output minus input). The type of 
information shown in Figs. 7 to 10 are called amplitude 
modulation to phase modulation (AM-PM) characteristics. 
They are useful in evaluating how linear is the behavior of a 
given transfer characteristic in regards to the phase.  

 

Fig. 7. AM-PM characteristics for direct modeling with 100 coefficients. 



 

Fig. 8. AM-PM characteristics for inverse modeling with 100 coefficients. 

 

Fig. 9. AM-PM characteristics and error for direct modeling with 100 

coefficients. 

 

Fig. 10. AM-PM characteristics and error for inverse modeling with 100 

coefficients. 

 Fig. 9 and 10 show the same information of Fig. 7 and 8 
and the same approach  to display information as the one used 
in Fig. 5 and 6. This is done here for the same reasons from 

Fig. 5 and 6. That is, to observe different informations 
simutaneously in the same figure. It can be observed that the 
number of red markers is sparse and rare, meaning that the 
treatment of phase information on this model (MIX) is 
performing well. 

 It is clear, based on the observation of the results, that the 
models perform overall quite well, meaning that their 
performance in predicting single points is very good, with the 
exception of some outliers. 

  

V. DISCUSSION 

When using reduction algorithms, single basis has a 

certain performance, which is generated by the selection of 

the most contributing coefficients of that basis. Given the fact 

that these bases utilize a equation that delimits how 

coefficients interact with your data, selecting a finite amount 

N of best performing coefficients from that basis will render 

you the best N coefficients of that basis. Each basis you apply 

this algorithm will give you different N coefficients. Some 

bases will perform better with their N coefficients than others, 

but that does not necessarily mean that all N coefficients of 

the best performing basis are better than all N coefficients of 

the other bases. In essence, MIX only puts all coefficients of 

both bases in the same space and selects the N best 

performing coefficients within this collective basis. This 

treatment showed to be successful, for certain numbers of 

coefficients N, but not for all. What this implies is that, for 

some aplications, MIX basis might be a real choice. This 

choice must be made in function of which N the selected 

application wants to utilize. Referencing Fig. 1 and 2 or 

generating a similar figure might serve as guide for when to 

use such basis.  
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